# ON INSTABILITY OF THE POSITION OF EQUILIBRIUM <br> OF A HAMILTONLAN SYSTEM 

PMM Vol.42, № 3, 1978, pp. 557-562
M. A. BALITINOV
(Makhachkala)
(Received December 21, 1976)
Consider the following system of Hamiltonian equations:

$$
\begin{align*}
& q_{j}^{*}=\frac{\partial H}{\partial p_{j}}, \quad p_{j}^{*}=-\frac{\partial H}{\partial q_{j}}, \quad i=1,2, \ldots, n  \tag{1}\\
& H(\mathbf{q}, \mathbf{p})=T+V=\frac{1}{2} \sum_{i, j=1}^{n} b_{i j}(\mathbf{q}) p_{i} p_{j}+V(\mathbf{q})
\end{align*}
$$

We assume that $T$ is a positive definite quadratic form near the point $\mathbf{q}=0$ and the origin is an isolated state of equilibrium of the system (1).

Below we obtain the sufficient conditions of instability of the position of equili brium of the system (1), which generalizes certain results already obtained (see [1, 4] and others). In what follows, we shall assume that

$$
\sum_{i, j=1}^{n} b_{i j}(0) p_{i} p_{j}=\sum_{j=1}^{n} p_{j}^{2}
$$

since otherwise we can attain it by means of the linear canonical transformation $\mathbf{q}=D^{\prime} \mathbf{x}$, $\mathbf{y}=D \mathbf{p}$, where $B=\left\{b_{i j}(0)\right\}=D D^{\prime}$ with the generating function $W(\mathbf{x}, \mathbf{p})=x^{\prime} D \mathbf{p}$.

Theorem 1. Let the following conditions hold:
$1^{\circ}$. The potential energy can be written in the form of a sum $V(\mathbf{q})=V_{\mu}(\mathbf{q})+$
$\Phi(\mathbf{q})$, where $\nabla_{\mu}(\mathbf{q})$ is a homogeneous function of dimension $\mu \geqslant 2$.
$\mathbf{2}^{\circ} . V_{\mu}(\mathbf{q}) \in c^{(2)}, \quad \Phi(\mathbf{q}) \in c^{(2)}, \quad b_{i j}(\mathbf{q}) \in c^{(1)}, \quad \min _{|\boldsymbol{q}|=1} V_{\mu}(q)=V_{\mu}(c)=-\lambda<0$.
$3^{\circ}$. For sufficiently small $\tau$ and $\mathbf{z}$ ( $\delta$ is an arbitrarily small quantity) | $F_{i}(\tau, 0) \mid$ $\leqslant N|\tau|$,

$$
\left|F_{i}\left(\tau, z_{* *}\right)-F_{i}\left(\tau, z_{*}\right)\right| \leqslant \delta\left|z_{* *}-z_{*}\right|,
$$

where

$$
F_{i}(\tau, \mathbf{z})=\left.\tau^{1-\mu} \frac{\partial \Phi}{\partial q_{i}}\right|_{q j=\tau\left(c_{j}+z_{j-1}\right)}
$$

Then the zero solution of the system (1) is unstable.
Proof. It is sufficient to show that the system (1) has a solution $\mathbf{p}(\mathbf{t}), \mathbf{q}(\mathbf{t})$ with the property that $\mathbf{p}(t) \rightarrow 0$ and $\mathbf{q}(t) \rightarrow 0$ as $t \rightarrow-\infty$ or $t \rightarrow+\infty$ (obviously, in addition to the solution $\mathbf{p}(t), \mathbf{q}(t)$ the system (1) also has a solution $-\mathbf{p}(-t), \mathbf{q}(-t))$.

Let us perform the change of variables

$$
\begin{align*}
& q_{1}=c_{1} \tau, \quad q_{i}=\tau\left(c_{i}+z_{i-1}\right), \quad i=2,3, \ldots, n  \tag{2}\\
& p_{i}=(2 \lambda)^{1 / 2} \tau^{1 / 2 \mu}\left(c_{i}+z_{n-1+i}\right), \quad i=1,2, \ldots, n
\end{align*}
$$

We assume that $c_{1} \neq 0$, since otherwise $q_{i}$ could be renumbered. From (2) we obtain

$$
\begin{aligned}
& \tau \frac{d z_{i-1}}{d \tau}=\frac{d q_{i}}{d \tau}-c_{i}-z_{i-1}=c_{1}\left(\frac{d q_{1}}{d t}\right)^{-1} \frac{d q_{i}}{d t}-c_{i}-z_{i-1}= \\
& c_{1}\left[\sum_{j=1}^{n} b_{1 j}(\mathbf{q}) p_{j}\right]^{-1} \sum_{j=1}^{n} b_{i j}(\mathbf{q}) p_{j}-c_{i}-z_{i-1}=-z_{i-1}-c_{1}{ }^{-1} c_{i} z_{n}+ \\
& \tau \frac{z_{n-1+i}+\ldots, \quad i=2,3, \ldots, n}{d z_{n-1+i}}=(2 \lambda)^{-1 / 2} \tau^{1-1} / 2 \mu \\
& d p_{i} \\
& d \tau \\
& \tau \\
& \frac{1}{2} c_{1}(2 \lambda)^{-1 / 2} \tau^{1-1 / 2 \mu}\left[\sum_{j=1}^{n} b_{1 j}(\mathbf{q}) p_{j}\right]^{-1}\left[\sum_{k, j=1}^{n} \frac{\partial b_{k j}}{\partial q_{i}} p_{k} p_{j}+\frac{\partial V}{\partial q_{i}}\right]- \\
& \frac{1}{2} \mu\left(c_{i}+z_{n-1+i}\right)=\sum_{j=1}^{2 n-1} d_{i j} z_{j}+\ldots
\end{aligned}
$$

where the repeated dots denote either the terms containing $\tau$, or those of order higher than the first in $z_{j}$. In deriving the above expressions, we made use of the equations

$$
\begin{aligned}
& \sum_{j=1}^{n} b_{1 j}(\mathbf{q}) p_{j}=p_{1}+\ldots=(2 \lambda)^{1 / 2 \tau^{1} / \mu}\left(c_{1}+z_{n}\right)+\ldots \\
& \left.\frac{\partial V_{\mu}}{\partial q_{j}}\right|_{q_{k}=c_{k}}=-\lambda \mu c_{j},\left.\frac{\partial\left(V_{\mu}+\Phi\right)}{\partial q_{j}}\right|_{q_{k}=\tau\left(c_{k}+z_{k-1}\right)}= \\
& \quad \tau^{\mu-1}\left(\left.\frac{\partial V_{\mu}}{\partial q_{j}}\right|_{q_{k}=c_{k}}+\left.\sum_{i=1}^{n} \frac{\partial^{2} V_{\mu}}{\partial q_{j} \partial q_{i}} z_{i}\right|_{q_{k}=c_{k}}+\ldots\right)+\left.\frac{\partial \Phi}{\partial q_{j}}\right|_{q_{k}=\tau\left(c_{k}+z_{k-1}\right)}
\end{aligned}
$$

which follow from the conditions of Theorem 1. As the result we have

$$
\begin{equation*}
\tau \frac{d \mathbf{z}}{d \tau}=A \mathbf{z}+f(\tau, \mathbf{z}) \tag{3}
\end{equation*}
$$

Here $A$ is a constant $(2 n-1)(2 n-1)$ matrix and the vector function $f(\tau, \mathrm{z})$ satisfies, in sufficiently small neighborhood of the coordinate origin, the following conditions:

$$
|f(\tau, 0)| \leqslant N_{*}|\tau|,\left|f\left(\tau, z_{* *}\right)-f\left(\tau, z_{*}\right)\right| \leqslant \varepsilon\left|z_{* *}-z_{*}\right|, N_{*}=\text { const }
$$

( $\varepsilon$ is an arbitrarily small quantity).
We know that when the above conditions hold, the system (3) has at least one trajectory emerging from the coordinate origin. Let $z_{j}=\varphi_{j}(\tau)(j=1,2, \ldots, 2 n-1)$ be a solution of the system (3) and let $\varphi_{j}(\tau) \rightarrow 0$ as $\tau \rightarrow+0$. Then

$$
\begin{array}{ll}
q_{1}=c_{1} \tau, \quad q_{i}=\tau\left(c_{i}+\varphi_{i-1}(\tau)\right), \quad i=2,3, \ldots, n \\
p_{i}=(2 \lambda)^{1 / 2} \tau^{1 / 2 \mu}\left(c_{i}+\varphi_{n-1+i}(\tau)\right), \quad i=1,2, \ldots, n
\end{array}
$$

is the phase trajectory of the system (1) adjacent to the position of equilibrium. It follows therefore that the system (1) has a phase trajectory along which the solutions attain the position of equilibrium as $t \rightarrow-\infty$. This in turn implies the instability of the position of equilibrium.

Let us give a geometrical representation of the conditions of Theorem 1. Consider
the systems of differential equations with the corresponding Hamiltonians

$$
H_{1}=\frac{1}{2} \sum_{j=1}^{n} p_{j}{ }^{2}+V_{\mu}(\mathbf{q}), \quad H_{2}=\frac{1}{2} \sum_{i, j=1}^{n} b_{i j}(\mathbf{q}) p_{i} p_{j}+V_{\mu}(\mathbf{q})+\Phi(\mathbf{q})
$$

The system corresponding to the Hamiltonian $H_{1}$ has the solution

$$
q_{j}=c_{j} \tau, \quad p_{j}=c_{j} \tau, \tau=\left\{\begin{array}{l}
\exp \left[(2 \lambda)^{1 / 2} t\right], \mu=2 \\
{\left[1+\frac{2-\mu}{2}(2 \lambda)^{1 / 2} t\right]^{2 /(2-\mu)}, \quad \mu>2}
\end{array}\right.
$$

where the vector $\mathbf{c}^{\prime}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ and the number $\lambda$ are determined from the condition

$$
\min _{|0|=1} V_{\mu}(\mathbf{q})=V_{\mu}(\mathrm{c})=-\lambda, \quad \lambda>0
$$

Consequently the relations $\partial V_{\mu}\left(c_{1}, c_{2}, \ldots, c_{n}\right) / \partial c_{j}+\lambda \mu c_{3}=0$ hold.
The particular solution obtained shows that the position of equilibrium of this system is unstable. The conditions of the theorem ensure the proximity of the systems with the Hamiltonians $H_{1}$ and $H_{2}$ along the curve $q_{j}=c_{j} \tau, p_{j}=(2 \lambda)^{1 / 2} \tau^{1 / 2} \mu c_{j}$ which represents the phase trajectory of the unperturbed system.

When the function $V_{\mu}(\mathbf{q})$ is nonnegative and $V(\mathbf{q})$ may assume negative values near the stationary point, then the theorem proved above can no longerbe applied to the system (1). In this case the Chetaev theorem (see [2]) is found useful. However, Chetaev did not give any general examples of constructing the vector function $\mathbf{F}=\left(F_{1}, F_{2}, \ldots\right.$ .,$F_{n}$ ), which appears in the conditions of the theorem.

We shall now show a method of constructing the vector function in question by means of several examples.

Example 1. Consider a system with the Hamiltonian

$$
H(\mathbf{q}, \mathbf{p})=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+V(\mathbf{q})=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\frac{1}{2} \sum_{j=2}^{n} c_{j} q_{j}^{2}+V_{3}+V_{4}+\ldots
$$

Let $c_{i}>0(i=2,3, \ldots, n)$ and the function $V(q)$ be of alternating sign in any neighborhood of the coordinate origin. We seek the vector function $\mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ as a solution of the equation

$$
\begin{equation*}
F_{1} V_{q_{\mathrm{t}}}+F_{2} V_{q_{2}}+\ldots+F_{n} V_{q_{n}}=V \tag{4}
\end{equation*}
$$

in the form

$$
F_{1}=F_{1}\left(q_{1}\right), \quad F_{2}=F_{2}\left(q_{1}, q_{2}\right), \ldots, \quad F_{n}=F_{n}\left(q_{1}, q_{2}, \ldots, q_{n}\right)
$$

Let $q_{j}=\varphi_{j}\left(q_{1}\right), j=2, \ldots, n$ be a solution of the system $V_{q_{2}}=0, \quad V_{q_{s}}=0, \ldots$,
$V_{q_{n}}=0$ (according to known theorems the system in question has a unique analytic solution). Considering the equation (4) along the curve $q_{j}=\varphi_{j}\left(q_{1}\right)$, we obtain

$$
F_{1}\left(q_{1}\right)=\left.V\left(V_{q_{1}}\right)^{-1}\right|_{q_{j}=\varphi_{j}\left(q_{1}\right)}=f\left(q_{1}\right)\left[\left.f^{\prime}\left(q_{1}\right)\right|^{-1}=\sum_{j=1}^{\infty} a_{j} q_{1}^{j}, \quad \alpha_{1}=m^{-1}\right.
$$

if $\left(q_{1}\right) \not \equiv 0$, since at a fixed value of $q_{1}$ the function $V\left(q_{1}, \ldots, q_{n}\right)$ assumes its minimum value at $q_{j}=\varphi_{j}\left(q_{1}\right)$ and this value is by definition negative). To find $F_{2}\left(q_{1}, q_{2}\right)$ we consider the equation (4) along the unique analytic solution $q_{j}=\psi_{j}\left(q_{1}, q_{2}\right)(j=$ $3,4, \ldots$ ) of the system $V_{q_{s}}=0, \ldots, V_{q_{n}}=0$. We obtain

$$
\left.F_{2}\left(q_{1}, q_{2}\right)=\left[\left(V-F_{1} V_{q_{1}}\right) V_{q_{2}}^{-1}\right]\right]_{q_{j}=\psi_{j}}
$$

Using the Weierstrass theorem [6] we can show that $F_{2}\left(q_{1}, q_{2}\right)$ is an analytic function, and we obviously have $F_{2}\left(q_{1}, q_{2}\right)=1 / 2 q_{2}+\ldots$.

In this manner we determine, one after the other $F_{j}=1 / 2 q_{j}+\ldots$ In what follows, we shall find useful the following lemma.

Lemma. Let $V(x, y)=V_{m}+V_{m+1}+\ldots$, and let the following conditions hold :
$1^{\circ}$. Equation $V_{y}=0$ defines the functions $y=\theta_{j}(x)=\alpha_{j} x+\ldots$ They have,
 $2^{\circ} . V(x, \theta,(x))=\gamma_{j}^{(0)} x^{m}+\gamma_{j}^{(1)} x^{m+1}+\ldots, \gamma_{j}^{(0)} \neq 0$.In this case an analytic vector function $F=\left(F_{1}, F_{2}\right)$ exists which is a solution of the equation

$$
\begin{align*}
& F_{1} V_{x}+F_{2} V_{y}=\left(x^{2}+y^{2}\right)^{l} V  \tag{5}\\
& l= \begin{cases}1 / 2 m-2, & \text { for even } m \\
1 / 2(m+1)-2, & \text { for odd } m\end{cases}
\end{align*}
$$

Proof. We seek a solution of (5) in the form

$$
F_{1}(x, y)=\psi_{0}(x)+\psi_{1}(x) y+\ldots+\psi_{m-2}(x) y^{m-2}, \quad F_{2}=F_{2}(x, y)
$$

Considering Eq. (5) for $y=\theta_{j}(x)(j=1,2, \ldots, m-1)$, we obtain the following system for determining $\psi_{j}(x)$ :

$$
\begin{align*}
& \psi_{0}+\theta_{1} \varphi_{1}+\ldots+\theta_{1}^{m-2} \Psi_{m-2}=\left(x^{2}+\theta_{1}^{2}\right)^{I} \varphi_{1}(x)  \tag{6}\\
& \psi_{0}+\theta_{2} \psi_{1}+\ldots+\theta_{2}^{m-2} \varphi_{m-2}=\left(x^{2}+\theta_{2}^{2}\right)^{l} \varphi_{2}(x)
\end{align*}
$$

$$
\begin{aligned}
& \text {. . . . . . . . . . . . . . . . . . . . . . } \\
& \psi_{0}+\theta_{m-1} \psi_{1}+\ldots+\theta_{m-1}^{m-2} \psi_{m-2}=\left(x^{2}+\theta_{m-1}^{2}\right)^{l} \varphi_{m-1}(x) \\
& \varphi_{j}(x)=\left.\left[V\left(V_{x}\right)^{-1}\right]\right|_{y=\theta_{j}(x)}=V\left(x, \theta_{j}(x)\right)\left(\frac{d}{d x} V\left(x, \theta_{j}(x)\right)\right)^{-1}=m^{-1} x+\ldots
\end{aligned}
$$

The functions $\psi_{j}(x)$ are obtained from (6) uniquely, and it can be shown that $\psi_{j}(x)$ are real analytic functions. Further we have

$$
F_{2}=\left[\left(x^{2}+y^{2}\right)^{l} V(x, y)-F_{1} V_{x}\right] V_{y}^{-1}
$$

By virtue of the Weierstrass theorem mentioned above, $F_{2}(x, y)$ is an analytic function. Having found the lower terms of the analytic functions $F_{1}$ and $F_{2}$, we can show that

$$
F_{1}=m^{-1} x\left(x^{2}+y^{2}\right)^{l}+\ldots, \quad F_{2}=m^{-1} y\left(x^{2}+y^{2}\right)^{2}+\ldots
$$

Example 2. Consider the Hamiltonian

$$
\begin{aligned}
& H=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+V(\mathrm{q})=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{j=3}^{n} c_{j} q_{j}^{2}+V_{N}+V_{N+1}+\ldots \\
& c_{j}>0, \quad j=3,4, \ldots n, \quad N>2
\end{aligned}
$$

Let $q_{j}=\psi_{j}\left(q_{1}, q_{2}\right)(j=3, \ldots, n)$ be a solution of the system of equations $V_{q_{z}}=0$, $V_{q_{4}}=0, \ldots, V_{q_{n}}=0$. We assume that the function

$$
V\left(q_{1}, q_{2}, \psi_{8}, \ldots, \psi_{n}\right)=V^{\circ}\left(q_{1}, q_{2}\right)=V_{m}^{\bullet}+V_{m+1}^{\bullet}+\ldots
$$

satisfies the conditions of the lemma. We seek the vector function $\mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ as a solution of the equation

$$
\begin{equation*}
F_{1} V_{q_{1}}+F_{2} V_{q_{2}}+\ldots+F_{n} V_{q_{n}}=\left(q_{1}^{2}+q_{2}^{2}\right)^{l} V \tag{1}
\end{equation*}
$$

in the form

$$
\begin{aligned}
& F_{1}=F_{1}\left(q_{1}, q_{2}\right), \quad F_{2}=F_{2}\left(q_{1}, q_{2}\right), \quad F_{3}=F_{3}\left(q_{1}, q_{2}, q_{3}\right), \ldots, \\
& F_{n}=F_{n}\left(q_{1}, q_{2}, \ldots, q_{n}\right)
\end{aligned}
$$

Considering now Eq. (7) on the manifold defined by the equations $q_{j}=\psi_{j}\left(q_{1}, q_{2}\right)$ $(j=3, \ldots, n)$, we obtain ( $l$ is determined in the same manner as in the lemma)

$$
\begin{equation*}
F_{1} V_{q_{1}}^{0}+F_{2} V_{q_{2}}^{0}=\left(q_{1}^{2}+q_{2}^{2}\right)^{l} V^{0} \tag{8}
\end{equation*}
$$

Equation (8) yields $F_{1}$ and $F_{2}$. Further, if $F_{1}, F_{2}, \ldots, F_{k}$ have been found, then $F_{k+1}$ can be determined by considering Eq. (7) on the manifold defined by the equations $V_{q_{k+2}}=0, \ldots, V_{q_{n}}=0$. Clearly, $F_{j}$ are analytic functions and their lower order terms liave the form

$$
\begin{aligned}
& F_{1}=m^{-1} q_{1}\left(q_{1}^{2}+q_{2}^{2}\right)^{l}+\ldots, \quad F_{2}=m^{-1} q_{2}\left(q_{1}^{2}+q_{2}^{2}\right)^{l}+\ldots \\
& F_{3}=1 / 2 q_{3}\left(q_{1}^{2}+q_{2}^{2}\right)^{l}+\ldots, \quad F_{n}=1 / 2 q_{n}\left(q_{1}^{2}+q_{2}^{2}\right)^{l}+\ldots
\end{aligned}
$$

The quadratic form

$$
\sum_{i, j=1}^{n} g_{i j} p_{i} p_{j}, \quad g_{i j}=\frac{1}{2}\left(\frac{\partial F_{i}}{\partial q_{j}}+\frac{\partial F_{i}}{\partial q_{i}}\right)
$$

is positive definite on the set

$$
Q=Q_{1} \cap Q_{2} ; \quad Q_{1}=\{V(\mathbf{q})<0\}, \quad Q_{2}=\left\{\sum_{j=1}^{n} q_{j}^{2}<h\right\}
$$

( $h$ is a sufficiently small number).
Indeed, we have $q_{3}{ }^{2}+q_{4}{ }^{2}+\ldots+q_{n}{ }^{2}<\delta\left(q_{1}{ }^{2}+q_{2}{ }^{2}\right)$, on the set $Q$, where $\delta(h)$ is an arbitrarily small quantity when $h$ is small. Writing the corresponding matrix in the form $G=G_{0}+G_{1}+\ldots$ where $G_{0}$ is a matrix composed of the lower order terms, we obtain

| $G_{0}=r^{l-1} G_{*}=r^{l-1} \times$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\left.\right\|^{m^{-1}}\left[(2 i+1) q_{1}^{2}+q_{2}{ }^{2}\right]$ | $2 l m^{-1} q_{1} q_{2}$ | $1 / 2 q_{1} q_{3}$ | $.1 / 2 l q_{1} q_{n-1}$ | $1 / 2 q_{1} q_{n}$ |
|  | $2 l m^{-1} q_{2} q_{1}$ | $m^{-1}\left[q_{1}{ }^{3}+(2 l+1) q_{2}{ }^{2}\right]$ | $1 / 2 q_{2} q_{3}$ | $\ldots{ }^{1 / 2} 2 q_{2} q_{n-1}$ | $1 / 2 q_{2} q_{n}$ |
|  | $1 / 2 l_{3} q_{1}$ | $1 /{ }_{2} q_{3} q_{2}$ | $r$ | 0 | 0 |
| $\times$ |  | - | $\stackrel{.}{ }$ | . | . |
|  | $\cdot$ |  | . | . . | . |
|  | ${ }^{1 / 2} / l_{n-1} q_{1}$ | $1 / 2 q_{n-1} q_{2}$ | 0 | $\cdots \quad r$ | 0 |
|  | $1 / 2 l q_{n} q_{1}$ | ${ }^{1 / 2} 2 q_{n} q_{2}$ | 0 | 0 | $r$ |

The Silvester determinants which begin in the lower right-hand corner of the matrix $G_{*}$, have the form

$$
\Delta_{1}=r, \Delta_{2}=r^{2}, \ldots, \Delta_{n-2}=r^{n-2}
$$

$$
\begin{aligned}
& \Delta_{n-1}=r^{n-2}\left\{m^{-1}\left[q_{1}^{2}+(2 l+1) q_{2}{ }^{2}\right]-\frac{l^{2} q_{2}{ }^{2}}{4 r} \rho\right\} \\
& \Delta_{n}=\left|\begin{array}{cc}
m^{-1}\left[(2 l+1) q_{1}^{2}+q_{2}{ }^{2}\right]-\frac{l^{2} q_{1}{ }^{2}}{4 r} \rho & 2 l m^{-1} q_{1} q_{2}-\frac{l^{2} q_{1} q_{2}}{4 r} \rho \\
2 l m^{-1} q_{1} q_{2}-\frac{l^{2} q_{1} q_{2}}{4 r} \rho & m^{-1}\left[q_{1}^{2}+(2 l+1) q_{2}{ }^{2}\right]-\frac{l^{2} q_{2}{ }^{2}}{4 r} \rho
\end{array}\right|
\end{aligned}
$$

In computing $\Delta_{n-1}$ and $\Delta_{n}$, we have used the following obvious assumption : if $\Delta, c, b$ and $k$ are the $m \times m, m \times n, n \times m, n \times n$ matrices respectively, and $|k| \neq 0$, then

$$
\left|\begin{array}{ll}
\Delta & c \\
b & k
\end{array}\right|=|k|\left|\Delta-c k^{-1} b\right|
$$

We have, on the set $Q, \Delta_{j}>0, j=1,2, \ldots, n$ with $q_{1}^{2}+q_{2}^{2}+\ldots+q_{n}^{2} \neq 0$. Consequently the vector function satisfies the conditions of the Chetaev theorem and this proves

Theorem 2. If the conditions: 1) function $V^{\circ}\left(q_{1}, q_{2}\right)$ satisfies the conditions of the Lemma and 2) function $V\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ has no strictly local minimum of the position of equilibrium, both hold, then the position of equilibrium of the Hamiltonian system

$$
q_{j}=\frac{\partial H}{\partial p_{j}}, \quad p_{j}^{\cdot}=\frac{\partial H}{\partial q_{j}}, \quad i=1,2, \ldots, n
$$

is unstable.

The author thanks V. V. Rumiantsev and the participants of his seminar for assessing the paper.

## REFERENCES

1. Liapunov,A.M., General Problem of Stability of Motion. Ed. 2, Moscow Leningrad, ONTI, 1935.
2. Chetaev, N.G., The Stability of Motion. (English translation), Pergamon Press. Book No. $09505,1961$.
3. Koiter, W. T., On the instability of equilibrium in the absence of a minimum of potential energy. Proc. Koninkl. Nederl. Acad. Wet. B. C, Vol. 68, 1965.
4. Hagedorn, P., Die Umkehrung der Stabilitäts-sătze von Lagrange - Dirichlet und Routh.- Orch. Rational Mech. and Analys., Vol. 42 , No. $4,1971$.
5. Nemytskif,V,V. and Stepanov,V.V. Analytical Theory of Differential Equations. (English translation), Princeton University Press, Princeton, N. Y. 1960.
6. Erugin, N. P., Implicit Functions. Lzd. LGU, Leningrad, 1956.
